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[Goal]
Learn from unlabeled videos by leveraging audio-visual correlations

[Our Solution]
Train multimodal Transformers in a self-supervised manner



Multimodal Transformers have been widely used in vision-and-language tasks

Previous Work:
Multimodal Transformers

Tan and Bansal. 2019. LXMERT: Learning Cross-Modality Encoder Representations from Transformers. EMNLP-IJCNLP
Sun et al. 2019. VideoBERT: A Joint Model for Video and Language Representation Learning. ICCV

Lu et al. 2019. ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks. NeurIPS
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Lu et al. 2019. ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks. NeurIPS

Multimodal Transformers have been widely used in vision-and-language tasks

Previous Work:
Multimodal Transformers

Typically rely on pretrained language BERT
due to large memory requirements😞



[Problem]
We do not have pretrained components in the task of audio-visual 
representation learning

We need to train models end-to-end

We need to reduce the model size!



1. First end-to-end trainable audio-visual Transformers
a. By using a novel parameter reduction scheme

2. Novel content-aware negative sampling for contrastive learning objectives
3. Competitive results on visual-only / audio-only / audio-visual downstream tasks

Contributions



Our Architecture

Mid-fusion multimodal Transformers (no pretrained components)



No Sharing Cross-Layers Sharing All Sharing

21M128M
parameters

7M

Parameter Sharing Schemes

Lan et al. 2020. ALBERT: A Lite BERT for Self-supervised Learning of Language Representations. ICLR
Jaegle et al. 2021. Perceiver: General Perception with Iterative Attention. arXiv preprint

4M
(97% reduction)

Ours:
Partial Sharing +

Low-Rank Factorization



Weight Sharing via Low-Rank Factorization

Perform low-rank factorization of  𝑊 ∈ ℝ!×#(𝑂 ≪ 𝑀,𝑁)

𝑊 = 𝑈 Σ 𝑉⊺

128M → 4M
(97% reduction)

𝑚𝑜𝑑𝑎𝑙𝑖𝑡𝑦 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐

𝑠ℎ𝑎𝑟𝑒𝑑
𝑈 ∈ ℝ!×$, Σ ∈ ℝ$×$, 𝑉 ∈ ℝ#×$

1. Reduce # of parameters: (M + N + O)O ≪ 𝑀𝑁
2. Able to model dynamics of each modality (Σ, 𝑉)
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Fusion Method Audio-Visual Audio-only Visual-only
Early 64.9 / 89.8 - / - - / -
Late 61.0 / 88.7 52.3 / 80.8 41.0 / 71.3
Mid 65.7 / 89.9 53.5 / 82.7 42.5 / 73.2

Sampling Method top-1 top-5
Current-Sequence 64.6 89.8
Current-MiniBatch 65.5 90.8
CANS-Similar 67.5 92.3

Model X.-L X.-T Params top-1/5
Multi-6 7 7 128M - / -
Multi-6 3 7 21M 65.7 / 89.9
Multi-6 3 3(All) 7M 67.1 / 92.3
Multi-6 3 3(Part) 4M 67.5 / 92.3

Model X.-L X.-T Params top-1/5
Vis-2 7 7 14M 41.4 / 71.0
Vis-2 3 7 7M 41.2 / 72.9
Vis-6 7 7 43M 43.8 / 74.2
Vis-6 3 7 7M 43.5 / 73.7

Table 1: Ablation study on Kinetics-Sounds comparing: (a; top-left) multimodal fusion methods,
(b; top-right) negative sampling strategies, and (c & d; bottom) parameter sharing schemes. X.-L:
Cross-layer, X.-T: Cross-Transformer sharing. We report top-1 and top-5 accuracy (%). †: Ours.

While both Early and Late perform similarly in the audio-visual scenario, only Late can be used
in unimodal downstream scenarios (c.f., Early requires the presence of both modalities). This has
practical implications: Mid and Late can effectively handle missing modalities, i.e., once pretrained
on audio-visual data, we can use it on any of audio-visual, audio-only, and visual-only scenarios. Our
Mid fusion approach enjoys both the advantages, i.e., learning cross-modal relationship and being
robust to missing modalities, achieving overall the best performance.

Negative Sampling Strategies. We compare four strategies: (i) Current-Sequence takes all
but the positive instance from the same sequence as negatives, (ii) Current-MiniBatch takes
all but the positive instance in the mini-batch as negatives; this subsumes Current-Sequence,
(iii) CANS-Dissimilar stochastically samples negatives using a modified version of our content-
aware negative sampling (CANS) that favors dissimilar samples, and (iv) CANS-Similar is our
proposed CANS approach that favors negatives that are similar to the positive instance.

Table 1 (b) shows Current-Sequence is the least effective: It makes MEP too difficult because
negatives are (sometimes too much) similar to positives. As a result, the training dynamics is
dominated by CPP, which is relatively easier, leading to inferior performance. We make quite the
contrary observations from Current-MiniBatch: the inclusion of negatives from different videos
makes MEP easier and thus makes it dominate the training dynamics. Our CANS approach solves
both these issues by eliminating negatives that are either almost identical to or trivial to distinguish
from the positives, based on the 95% CI over the CNN embedding distances. It also samples negatives
in a stochastic manner so a wide variety of samples can be included as negatives. Our proposed
CANS-Similar can be considered as a “softened” version of Current-Sequence; it samples
negatives that are similar to positives with a high probability (this can be considered as online hard
negative mining), but it also takes instances from different videos with a lower probability. This
balances out hard and easy negatives, making the MEP task effective.

Parameter Sharing Schemes. Our parameter reduction scheme reduces the number of parameters
from 128M to 4M (by 97%) (Table 1 (c)). We reduce the model size by sharing weights across
Transformers and across layers. We validate these ideas in two sets of experiments. Table 1
(c) compares cross-Transformer weight sharing schemes. We use Multi-6 that uses all three
Transformers with 6 layers each, and compare four methods that correspond to Figure 2 (a)-(d).
Note that No sharing is too large to fit in a Tesla V100 GPU (16GB) even with 2 samples, so we
define Multi-2 that uses three Transformers with 2 layers each, and with the reduced number of
attention heads A to 5, the feature dimension D to 320 and the intermediate dimension E to 1280.
We see that our proposed approach, Part, achieves the best performance with the least number of
parameters. One might ask how Part leads to a smaller model when All shares all the weights
across Transformers: We decompose weights W = U⌃V > with low-rank approximation and share
only U across Transformers, while the ⌃V > part learns modality-specific dynamics. Table 1 (d)
compares cross-layer weight sharing schemes using the visual Transformer with either 2 (Vis-2) or
6 (Vis-6) layers. The results show that sharing weights across layers does not hurt the performance,
confirming the observations by Lan et al. (2020) in the audio-visual setting.

Pretraining Objectives. To evaluate the importance of MEP and CPP tasks, we test two settings:
(i) Mid-w/o-CPP and (ii) Mid-w/o-MEP. On Kinetics-Sounds, these achieve 65.9% and 64.6%,
respectively; ours achieve 67.5% (top-1 accuracy). The result show that the MEP task plays an
important role during pretraining, confirming the findings from Sun et al. (2019a) that the InfoNCE
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Experiments: Low-Rank Factorization
Results on Kinetics-Sounds (audio-visual classification benchmark)

Arandjelovic and Zisserman. 2017. Look, Listen and Learn. ICCV

Multi-6: Mid-fusion model, each Transformer of which has 6 layers
X.-L: Cross-Layers sharing
X.-T: Cross-Transformers sharing (All: all sharing, Part: low-rank factorization (ours))



Self-Supervised Learning Task
Masked Embedding Prediction (MEP)

!o!

x!

Identify the correct masked input 
compared to a set of negative samples

𝑚𝑢𝑡𝑢𝑎𝑙 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛
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the previous step, we share the same p0:T between embeddings from the two modalities to correctly
indicate the time indices. We augment the modality and time embeddings via layer normalization,

wv

t
= LayerNorm(yv

t
+ pt +mv), wa

t
= LayerNorm(ya

t
+ pt +ma), 8t 2 [0, T ] (3)

We feed the augmented visual embeddings wv

0:T and audio embeddings wa

0:T to the multimodal
Transformer hAV , one after another, and obtain z0:(2T+1) = hAV ([wv

0:T ;w
a

0:T ]). We again denote
the output embeddings corresponding to the BOS positions by BOSv

h
= zv0(= z0) and BOSa

h
= za0(=

zT+1), and use them as summary embeddings encoding multimodal context.

We emphasize the importance of feeding wv

0:T and wa

0:T one after another. An alternative would be
concatenating them before feeding them to hAV and obtaining an output z0:T (instead of z0:(2T+1)).
However, this restricts the Transformer to access audio-visual embeddings only from the same
time slices, which could be problematic when there is a temporally asynchronous relationship
between the two modalities (e.g., a visual clip matches with sound captured a few times steps
before) (Kazakos et al., 2019; Morgado et al., 2020). By arranging the two sequences one after the
other, the Transformer can mix-and-match appropriate audio-visual embeddings in an asynchronous
manner. Another practical concern with the alternative approach is that it significantly increases the
model size; the weight matrices Wq,Wk,Wv grow quadratically with the input feature dimension D.
Serializing the input resolves both issues.

2.1 SELF-SUPERVISED PRETRAINING OBJECTIVES

Task 1: Masked Embedding Prediction (MEP). BERT (Devlin et al., 2019) is trained using the
masked language model (MLM) task, which randomly selects input tokens and replaces them with
a mask token. The model is then trained to predict the original (unmasked) tokens by solving a
classification task with a cross-entropy loss. However, inputs to our model are real-valued audio-
visual signals (rather than discrete tokens),2 so applying the MLM task requires input discretization,
which causes information loss (Lu et al., 2019; Sun et al., 2019a). We instead train our model to
identify the correct visual clip or audio stream compared to a set of negative samples in a contrastive
manner, which does not require input discretization.

We formulate our MEP task using InfoNCE (Oord et al., 2018), which is the softmax version of the
noise contrastive estimation (NCE) (Gutmann & Hyvärinen, 2010). Let õt be the t-th output of any
of the three Transformers obtained by masking the t-th input xt. Our InfoNCE loss is then defined as

LMEP(x, õ) = �Ex

"
X

t

log
I(xt, õt)

I(xt, õt) +
P

j2neg(t) I(xj , õt)

#
, (4)

where neg(t) are negative sample indices and the compatibility function I(xt, õt) is,

I(xt, õt) = exp
�
FFN>(õt)WIxt

�
, (5)

where WI 2 RP⇥D (P = 256) and FFN is a two-layer feed-forward network. The use of a non-linear
prediction head has shown to improve the quality of the representations learned in a contrastive
learning setup (Chen et al., 2020); following the recent work in Transformers (Devlin et al., 2019; Liu
et al., 2019; Lan et al., 2020), we use a GELU non-linear activation function (Hendrycks & Gimpel,
2016) in FFN. Optimizing Eqn. 4 enforces I(xt, õt) to approximate the density ratio p(xt|õt)

p(xt)
; this

can be seen as maximizing the mutual information between xt and õt (Oord et al., 2018). Intuitively,
this encourages the Transformer to capture the underlying dynamics of x from each modality without
explicitly learning a generative model p(xt|õt).

Negative sampling. We find that a good negative sampling strategy is essential for the model’s
convergence. Existing approaches either use all but xt (positive) within a mini-batch as negative
samples or limit it to the current sequence only. However, both these methods ignore the data content
and thus can miss useful negatives. Oord et al. (2018) showed that leveraging prior knowledge about
data can improve the negative sample quality (e.g., by sampling negatives from the same speaker as
the positive). Unfortunately, such prior knowledge is often not available in unlabeled videos.

2In the form of RGB images and log-mel-scaled spectrograms.
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Content-Aware Negative Sampling (CANS)

Stochastic sampling based on 𝑆𝑖𝑚 x% , x𝒋
• favors negatives sufficiently similar to x!
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x! = x" = x# =

Sampling
Probability

𝑆𝑖𝑚(x𝒕, x𝒎) 𝑆𝑖𝑚(x# , x$)

Ensure diversity, but favor hard negatives
→make the MEP task effective!
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Fusion Method Audio-Visual Audio-only Visual-only
Early 64.9 / 89.8 - / - - / -
Late-w/-CPP 61.0 / 88.7 52.3 / 80.8 41.0 / 71.3
Late-w/o-CPP 60.6 / 87.6 50.5 / 79.9 40.7 / 71.7
Mid 65.7 / 89.9 53.5 / 82.7 42.5 / 73.2

Sampling Method top-1 top-5
Current-Sequence 64.6 89.8
Current-MiniBatch 65.5 90.8
CANS-Similar 67.5 92.3

Model X.-L X.-T Params top-1/5
Multi-2 7 7 7M 60.3 / 88.9
Multi-6 3 7 21M 65.7 / 89.9
Multi-6 3 3(All) 7M 67.1 / 92.3
Multi-6 3 3(Part†) 4M 67.5 / 92.3

Model X.-L X.-T Params top-1/5
Vis-2 7 7 14M 41.4 / 71.0
Vis-2 3 7 7M 41.2 / 72.9
Vis-6 7 7 43M 43.8 / 74.2
Vis-6 3 7 7M 43.5 / 73.7

Table 1: Ablation study on Kinetics-Sounds comparing: (a; top-left) multimodal fusion methods,
(b; top-right) negative sampling strategies, and (c & d; bottom) parameter sharing schemes. X.-L:
Cross-layer, X.-T: Cross-Transformer sharing. We report top-1 and top-5 accuracy (%). †: Ours.

While both Early and Late perform similarly in the audio-visual scenario, only Late can be used
in unimodal downstream scenarios (c.f., Early requires the presence of both modalities). This has
practical implications: Mid and Late can effectively handle missing modalities, i.e., once pretrained
on audio-visual data, we can use it on any of audio-visual, audio-only, and visual-only scenarios. Our
Mid fusion approach enjoys both the advantages, i.e., learning cross-modal relationship and being
robust to missing modalities, achieving overall the best performance.

Negative Sampling Strategies. We compare four strategies: (i) Current-Sequence takes all
but the positive instance from the same sequence as negatives, (ii) Current-MiniBatch takes
all but the positive instance in the mini-batch as negatives; this subsumes Current-Sequence,
(iii) CANS-Dissimilar stochastically samples negatives using a modified version of our content-
aware negative sampling (CANS) that favors dissimilar samples, and (iv) CANS-Similar is our
proposed CANS approach that favors negatives that are similar to the positive instance.

Table 1 (b) shows Current-Sequence is the least effective: It makes MEP too difficult because
negatives are (sometimes too much) similar to positives. As a result, the training dynamics is
dominated by CPP, which is relatively easier, leading to inferior performance. We make quite the
contrary observations from Current-MiniBatch: the inclusion of negatives from different videos
makes MEP easier and thus makes it dominate the training dynamics. Our CANS approach solves
both these issues by eliminating negatives that are either almost identical to or trivial to distinguish
from the positives, based on the 95% CI over the CNN embedding distances. It also samples negatives
in a stochastic manner so a wide variety of samples can be included as negatives. Our proposed
CANS-Similar can be considered as a “softened” version of Current-Sequence; it samples
negatives that are similar to positives with a high probability (this can be considered as online hard
negative mining), but it also takes instances from different videos with a lower probability. This
balances out hard and easy negatives, making the MEP task effective.

Parameter Sharing Schemes. Our parameter reduction scheme reduces the number of parameters
from 128M to 4M (by 97%) (Table 1 (c)). We reduce the model size by sharing weights across
Transformers and across layers. We validate these ideas in two sets of experiments. Table 1
(c) compares cross-Transformer weight sharing schemes. We use Multi-6 that uses all three
Transformers with 6 layers each, and compare four methods that correspond to Figure 2 (a)-(d).
Note that No sharing is too large to fit in a Tesla V100 GPU (16GB) even with 2 samples, so we
define Multi-2 that uses three Transformers with 2 layers each, and with the reduced number of
attention heads A to 5, the feature dimension D to 320 and the intermediate dimension E to 1280.
We see that our proposed approach, Part, achieves the best performance with the least number of
parameters. One might ask how Part leads to a smaller model when All shares all the weights
across Transformers: We decompose weights W = U⌃V > with low-rank approximation and share
only U across Transformers, while the ⌃V > part learns modality-specific dynamics. Table 1 (d)
compares cross-layer weight sharing schemes using the visual Transformer with either 2 (Vis-2) or
6 (Vis-6) layers. The results show that sharing weights across layers does not hurt the performance,
confirming the observations by Lan et al. (2020) in the audio-visual setting.

Pretraining Objectives. To evaluate the importance of MEP and CPP tasks, we test two settings:
(i) Mid-w/o-CPP and (ii) Mid-w/o-MEP. On Kinetics-Sounds, these achieve 65.9% and 64.6%,
respectively; ours achieve 67.5% (top-1 accuracy). The result show that the MEP task plays an
important role during pretraining, confirming the findings from Sun et al. (2019a) that the InfoNCE
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Experiments: CANS

Arandjelovic and Zisserman. 2017. Look, Listen and Learn. ICCV

Current-Sequence: Negative sampling from the same sequence (only hard)
Current-Minibatch: Negative sampling from the same mini-batch (too many easy)
CANS-Similar: Content-Aware Negative Sampling (Ours)

Results on Kinetics-Sounds (audio-visual classification benchmark)



Experiments: Downstream Tasks

Versatility
competitive results on
several downstream tasks

Soomro et al. 2012. UCF101: A Dataset of 101 Human Action Classes From Videos in The Wild. CRCV-TR-12-01
Piczak. 2015. ESC: Dataset for Environmental Sound Classification. ACM-MM

Sigurdsson et al. 2016. Hollywood in Homes: Crowdsourcing Data Collection for Activity Understanding. ECCV
Arandjelovic and Zisserman. 2017. Look, Listen and Learn. ICCV
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a) Model Net Data UCF
ST-Puzzle 3D-R18 K400 65.8
ClipOrder R(2+1)D UCF 72.4
DPC 3D-R34 K400 75.7
CBT S3D K600 79.5
MultiSens 3D-R18 AS 82.1
AVTS MC3-18 K400 85.8
AVTS MC3-18 AS 89.0

V-CNN
† SlowFast K700 85.2

V-CNN
† SlowFast AS 86.1

b) Model Net Data ESC
SVM MLP - 39.6
ConvAE CNN-4 39.9
RF MLP - 44.3
ConvNet CNN-4 - 64.5
SoundNet CNN-8 FS 74.2
L

3-Net CNN-8 FS 79.3
DMC VGG-ish FS 79.8
AVTS VGG-M AS 80.6
A-CNN

† R50 AS 81.5

c) Model Charades KS
Random 5.9 - / -
ATF 18.3 - / -
ATF (OF) 22.4 - / -
V-CNN 18.7 45.8 / 73.3
A-CNN 18.9 49.4 / 76.9
M-CNN 23.1 59.4 / 83.6
V-BERT 26.0 49.5 / 78.9
A-BERT 27.4 58.9 / 85.7
M-BERT

†
29.5 75.6 / 94.6

Datasets. K: Kinetics, AS: AudioSet, FS: Flicker-SoundNet, KS: Kinetics-Sounds.

2019b; Li et al., 2020; Zhou et al., 2020; Su et al., 2020; Chen et al., 2019b; Zhu & Yang, 2020) or
mid fusion (Tan & Bansal, 2019; Lu et al., 2019; Sun et al., 2019a; Luo et al., 2020) without thorough
validation, and they train only visual components while relying on a language-pretrained BERT.
Although there have been some efforts to leverage the Transformer architecture (Vaswani et al., 2017)
for audio and visual inputs (Boes & Van hamme, 2019; Tian et al., 2020), our approach is the first to
demonstrate multimodal audio-visual BERT trained from scratch in an end-to-end manner. This is
enabled by our novel parameter reduction technique, which is one of our main technical contributions.

Audio-Visual Learning. Early work in audio-visual learning focused on speech signals, improving
audio-visual speech recognition than unimodal approaches (Ngiam et al., 2011; Srivastava & Salakhut-
dinov, 2012). Recent approaches leverage unlabeled videos from specific domains (Owens et al.,
2016; Gao & Grauman, 2019; Zhao et al., 2018; Ephrat et al., 2018; Alwassel et al., 2019; Miech et al.,
2020; Piergiovanni et al., 2020) and often demonstrate on audio-visual source separation, localization,
and co-segmentation. However, these approaches rely on short-term audio-visual correspondence and
thus may not generalize to long-term video recognition that requires global context (as was suggested
in (Hjelm et al., 2019)), which this work focuses on.

Parameter Reduction. Network pruning (Reed, 1993; Caron et al., 2020) trains a large model
and then reduces its size while maintaining performance. Reducing the size of CNNs for mobile
applications is an active research area (Rastegari et al., 2016; Howard et al., 2017; 2019; Zhang et al.,
2018; Iandola et al., 2016). Our work is closely related to the work that shares parameters across layers
in deep neural networks. Trellis network (Bai et al., 2019b) is a temporal convolutional architecture
with weight-tying across time and depth. Similar to ours, Universal Transformer (Dehghani et al.,
2019), RSNMT (Dabre & Fujita, 2019), DEQ (Bai et al., 2019a), ALBERT (Lan et al., 2020) share
weights across layers in Transformers. We combine this idea with our novel cross-Transformer weight
sharing, which decomposes weight matrices with low-rank approximation.

Negative Sampling. Hard negative mining has been shown to be crucial for contrastive learn-
ing (Arandjelovic & Zisserman, 2017; Owens & Efros, 2018; Korbar et al., 2018; Schroff et al.,
2015; Zhuang et al., 2019; Morgado et al., 2020; Wu et al., 2020). Korbar et al. (2018) use the time
difference between clips to approximate clip similarity (i.e., clips that are further apart are deemed
more different). However, such an assumption may not hold for real-world videos, e.g., periodic
actions such as push-ups. Unlike this line of approaches, we directly use the feature embeddings
learned by our model. Several apparoaches adapted a similar idea (Schroff et al., 2015; Zhuang et al.,
2019; Morgado et al., 2020; Wu et al., 2020). Different from prior work, we bring the stochasticity to
the sampling procedure by using the content similarity as the sampling probability; this helps reduce
potential errors especially during the early stage of training.

5 CONCLUSION

We introduced a multimodal bidirectional Transformer architecture for self-supervised learning of
contextualized audio-visual representation from unlabeled videos. Our main technical contributions
include: (1) we propose a parameter efficient multimodal Transformers based on matrix decomposi-
tion with low-rank approximation; (2) we propose a novel content-aware negative sampling technique
for contrastive learning. We demonstrate a successful end-to-end training of multimodal Transformers
for audio-visual learning (which is, to the best of our knowledge, the first time in the literature). We
also report comprehensive evaluation of various design decisions in multimodal learning.

Acknowledgements. This work was partially supported by Institute of Information & communi-
cations Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT)
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a) Model Net Data UCF
ST-Puzzle 3D-R18 K400 65.8
ClipOrder R(2+1)D UCF 72.4
DPC 3D-R34 K400 75.7
CBT S3D K600 79.5
MultiSens 3D-R18 AS 82.1
AVTS MC3-18 K400 85.8
AVTS MC3-18 AS 89.0

V-CNN
† SlowFast K700 85.2

V-CNN
† SlowFast AS 86.1

b) Model Net Data ESC
SVM MLP - 39.6
ConvAE CNN-4 39.9
RF MLP - 44.3
ConvNet CNN-4 - 64.5
SoundNet CNN-8 FS 74.2
L

3-Net CNN-8 FS 79.3
DMC VGG-ish FS 79.8
AVTS VGG-M AS 80.6
A-CNN

† R50 AS 81.5

c) Model Charades KS
Random 5.9 - / -
ATF 18.3 - / -
ATF (OF) 22.4 - / -
V-CNN 18.7 45.8 / 73.3
A-CNN 18.9 49.4 / 76.9
M-CNN 23.1 59.4 / 83.6
V-BERT 26.0 49.5 / 78.9
A-BERT 27.4 58.9 / 85.7
M-BERT

†
29.5 75.6 / 94.6

Datasets. K: Kinetics, AS: AudioSet, FS: Flicker-SoundNet, KS: Kinetics-Sounds.

2019b; Li et al., 2020; Zhou et al., 2020; Su et al., 2020; Chen et al., 2019b; Zhu & Yang, 2020) or
mid fusion (Tan & Bansal, 2019; Lu et al., 2019; Sun et al., 2019a; Luo et al., 2020) without thorough
validation, and they train only visual components while relying on a language-pretrained BERT.
Although there have been some efforts to leverage the Transformer architecture (Vaswani et al., 2017)
for audio and visual inputs (Boes & Van hamme, 2019; Tian et al., 2020), our approach is the first to
demonstrate multimodal audio-visual BERT trained from scratch in an end-to-end manner. This is
enabled by our novel parameter reduction technique, which is one of our main technical contributions.

Audio-Visual Learning. Early work in audio-visual learning focused on speech signals, improving
audio-visual speech recognition than unimodal approaches (Ngiam et al., 2011; Srivastava & Salakhut-
dinov, 2012). Recent approaches leverage unlabeled videos from specific domains (Owens et al.,
2016; Gao & Grauman, 2019; Zhao et al., 2018; Ephrat et al., 2018; Alwassel et al., 2019; Miech et al.,
2020; Piergiovanni et al., 2020) and often demonstrate on audio-visual source separation, localization,
and co-segmentation. However, these approaches rely on short-term audio-visual correspondence and
thus may not generalize to long-term video recognition that requires global context (as was suggested
in (Hjelm et al., 2019)), which this work focuses on.

Parameter Reduction. Network pruning (Reed, 1993; Caron et al., 2020) trains a large model
and then reduces its size while maintaining performance. Reducing the size of CNNs for mobile
applications is an active research area (Rastegari et al., 2016; Howard et al., 2017; 2019; Zhang et al.,
2018; Iandola et al., 2016). Our work is closely related to the work that shares parameters across layers
in deep neural networks. Trellis network (Bai et al., 2019b) is a temporal convolutional architecture
with weight-tying across time and depth. Similar to ours, Universal Transformer (Dehghani et al.,
2019), RSNMT (Dabre & Fujita, 2019), DEQ (Bai et al., 2019a), ALBERT (Lan et al., 2020) share
weights across layers in Transformers. We combine this idea with our novel cross-Transformer weight
sharing, which decomposes weight matrices with low-rank approximation.

Negative Sampling. Hard negative mining has been shown to be crucial for contrastive learn-
ing (Arandjelovic & Zisserman, 2017; Owens & Efros, 2018; Korbar et al., 2018; Schroff et al.,
2015; Zhuang et al., 2019; Morgado et al., 2020; Wu et al., 2020). Korbar et al. (2018) use the time
difference between clips to approximate clip similarity (i.e., clips that are further apart are deemed
more different). However, such an assumption may not hold for real-world videos, e.g., periodic
actions such as push-ups. Unlike this line of approaches, we directly use the feature embeddings
learned by our model. Several apparoaches adapted a similar idea (Schroff et al., 2015; Zhuang et al.,
2019; Morgado et al., 2020; Wu et al., 2020). Different from prior work, we bring the stochasticity to
the sampling procedure by using the content similarity as the sampling probability; this helps reduce
potential errors especially during the early stage of training.

5 CONCLUSION

We introduced a multimodal bidirectional Transformer architecture for self-supervised learning of
contextualized audio-visual representation from unlabeled videos. Our main technical contributions
include: (1) we propose a parameter efficient multimodal Transformers based on matrix decomposi-
tion with low-rank approximation; (2) we propose a novel content-aware negative sampling technique
for contrastive learning. We demonstrate a successful end-to-end training of multimodal Transformers
for audio-visual learning (which is, to the best of our knowledge, the first time in the literature). We
also report comprehensive evaluation of various design decisions in multimodal learning.
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