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• Self-supervised learning of video representations by eliminating the expensive RGB 
video frame decoding step

• A novel three-stream video architecture that encodes I-frames and P-frames 
(Motion, Residuals)
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Objective – Representation learning 
for compressed video streams
• We train the model using two novel pretext tasks designed by exploiting the 

underlying structure of compressed videos
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Solution – IMR Network

• Encode different information streams provided in compressed videos 
• Use bidirectional dynamic connections to facilitate information sharing across stream



Solution – Self-supervised Pretext task (PMSP)

4 way Classification × [t=5]
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Pyramidal motion statistics prediction task 
• Make our network find a region with the highest energy of motion
• 2-layer MLP with a softmax classifier predict the most vibrant region in the 

given 3D grid



Pyramidal motion statistics prediction task 
• Implicit videographer bias captured in videos that naturally reflect visual saliency
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Solution – Self-supervised Pretext task (PMSP)



Solution – Self-supervised Pretext task (CTP)
Correspondence type prediction task
• Make our network categorize different types of transformations applied on P-frame
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Experiments – Compressed Video Classification
Achieve state-of-the-art performance in both self-supervised/supervised regimes
• While maintaining a similar computational efficiency as existing compressed video 

recognition approachesPublished as a conference paper at ICLR 2021

Models Compressed Modality Pretext Pretrain Backbone UCF101 HMDB51
C3D 7 V MotPred Kinetics400 C3D 61.2 33.4
3D-ResNet18 7 V RotNet3D Kinetics600 3D-ResNet18 62.9 33.7
3D-ResNet18 7 V ST-Puzzle Kinetics400 3D-ResNet18 65.8 33.7
R(2+1)D-18 7 V ClipOrder UCF101 R(2+1)D-18 72.4 30.9
3D-ResNet34 7 V DPC Kinetics400 3D-ResNet34 75.7 35.7
Multisensory 7 A+V Multisensory Kinetics400 Audio-VisualNet 82.1 –
AVTS 7 A+V AVTS Audioset MC3 89.0 61.6
ELo 7 A+V ELo Kinetics400 (2+1)D ResNet-50 93.8 67.4
CoViAR‡ 3 V Scratch None ResNet152 43.8 27.3
IMRNet 3 V Scratch None 3D-ResNet18 74.1 43.7
CoViAR‡ 3 V AOT Kinetics400 ResNet152 53.6 29.3
CoViAR‡ 3 V Rotation Kinetics400 ResNet152 56.7 31.4
IMRNet 3 V InfoNCE Kinetics400 3D-ResNet18 73.9 43.7
IMRNet 3 V AOT Kinetics400 3D-ResNet18 74.6 44.0
IMRNet 3 V Rotation Kinetics400 3D-ResNet18 75.1 44.3
CoViAR‡ 3 V PMSP Kinetics400 ResNet152 63.5 35.9
CoViAR‡ 3 V CTP Kinetics400 ResNet152 64.4 37.4
CoViAR‡ 3 V CTP (Binary) Kinetics400 ResNet152 63.7 37.1
IMRNet 3 V PMSP Kinetics400 3D-ResNet18 76.0 44.9
IMRNet 3 V CTP Kinetics400 3D-ResNet18 76.7 44.8
IMRNet 3 V CTP (Binary) Kinetics400 3D-ResNet18 74.6 44.2
IMRNet 3 V PMSP+CTP Kinetics400 3D-ResNet18 76.8 45.0

Table 3: Results from the self-supervised setting. Column Compressed indicates the methods
that learn directly from compressed videos without decoding them. Modality indicates whether
a method used only visual (V) modality or audio-visual modalities (A+V). Pretrain indicates
datasets used for self-supervised pretraining. ‡: based on an official implementation by the authors.

3D CNN backbones do not bring any significant extra cost compared to CoViAR and DMC, and thus
our model enjoys all the computational benefits of compressed video processing.

3.2 SELF-SUPERVISED LEARNING EXPERIMENTS

We move to the self-supervised regime and demonstrate our pretext tasks by pretraining our IMRNet
on Kinetics400 (Kay et al., 2017) and transferring it to action recognition. Because ours is the first
self-supervised approach to learn compressed video representation, there exist no published baseline
that we can directly compare with. Therefore, we provide results from existing self-supervised
approaches that require the decoding step. We include approaches that learn from RGB images –
AOT (Wei et al., 2018), Rotation (Jing et al., 2018), MotPred (Wang et al., 2019a), RotNet3D (Jing
et al., 2018), ST-Puzzle (Kim et al., 2019), ClipOrder (Xu et al., 2019), DPC (Han et al., 2019) – as
well as those that learn from audio and visual channels in videos – Multisensory (Owens & Efros,
2018), AVTS (Korbar et al., 2018), Elo (Piergiovanni et al., 2020).

Table 3 summarizes the results. We first notice that pretraining the models with any pretext tasks
improves downstream performance (the first group of results), suggesting self-supervised pretraining
is effective in general. We also see that IMRNet pretrained using our pretext tasks (PMSP+CTP)
outperforms the baseline pretext tasks (second group) and self-supervised methods for uncompressed
videos (third group). This shows the effectiveness of our IMRNet pretrained with our pretext tasks.

Next, we conduct an ablation study by pretraining the base models using either PMSP and CTP alone.
We also test CTP (Binary) which is a simplied version of our CTP task with only two modes:
Aligned and Random (see Figure 4). Note that this is a typical pair correspondence setup used in the
literature (Arandjelovic & Zisserman, 2017). Table 3 (fourth group) shows the results. We can see
that using either of our pretext tasks leads to a significant improvements compared to the Scratch
result. The CTP (Binary) results suggests that the two additional transformation types (Shuffle
and Shift in Figure 4) improves the task by making it more difficult to solve; we noticed that the loss
curve of CTP (Binary) decreases significantly faster than CTP and quickly saturates thereafter.
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Self-supervised setting

Published as a conference paper at ICLR 2021

Models OF Pretrain Backbone UCF101 HMDB51
CoViAR‡ 7 Scratch ResNet152 43.8 27.3
IMR (No connection) 7 Scratch 3D-ResNet18 52.7 34.6
IMR (Unidirectional) 7 Scratch 3D-ResNet18 69.7 40.8
IMR (No conv) 7 Scratch 3D-ResNet18 71.7 42.6
IMR (No attention) 7 Scratch 3D-ResNet18 73.2 43.5
IMRNet 7 Scratch 3D-ResNet18 74.1 43.7
IMRNet 7 Scratch 3D-ResNet50 80.2 55.9
CoViAR† 7 ImageNet ResNet152 (I), ResNet18 (P) 90.4 59.1
CoViAR‡ 7 Kinetics400 ResNet152 90.8 59.2
IMRNet (Ours) 7 Kinetics400 3D-ResNet18 91.4 62.8
IMRNet (Ours) 7 Kinetics400 3D-ResNet50 92.6 67.8

CoViAR† 3 ImageNet ResNet152 (I), ResNet18 (P, OF) 94.9 70.2
DMC-Net† 3 ImageNet ResNet152 (I), ResNet18 (P) 90.9 62.8
DMC-Net† 3 ImageNet ResNet152 (I), I3D (P) 92.3 71.8
IMRNet (Ours) 3 Kinetics400 3D-ResNet50 (I, P), I3D (OF) 95.1 72.2

Table 1: Results from the supervised setting. Column OF indicates results using optical flow during
training. Column Pretrain indicates datasets used for supervised pretraining. †: published results.
‡: our results based on official implementations by the authors.

Models ResNet152⇤ R(2+1)D† CoViAR‡ DMC‡ IMR‡ (R18) IMR‡ (R50)
Preprocess (ms) 75.00 75.00 2.87 2.87 2.87 2.87
Inference (ms) 7.50 1.74 1.30 1.91 1.36 1.44
Total (ms) 82.50 76.74 4.17 4.78 4.23 4.31
GFLOPs 11.3 0.96 4.2 4.4 0.66 1.04

Table 2: Runtime analysis of per-frame speed (ms) and FLOPs. The number of input frames are
different across models: ⇤ 1 frame (since it is a 2D CNN), † 16 frames, ‡ 25 frames.

CoViAR and DMC-Net reported improved results when they are trained using optical flow. Therefore,
we also conduct experiments by adding an I3D network (Carreira & Zisserman, 2017) to encode
optical flow images; we simply concatenate our IMRNet features with the I3D features as our final
representation (no lateral connections between IMRNet and I3D). This model outperforms both
CoViAR and DMC-Net trained with optical flow (bottom group, Table 1). DMC-Net improves upon
CoViAR by adapting GANs (Goodfellow et al., 2014) to reconstruct optical flow from P-frames.
Note that our approach (with 3D-ResNet50 backbone) outperforms DMC-Net (with ResNet152/18
backbones) on both datasets even without using optical flow during training and thus significantly
simplifies the training setup (no GANs required).

Next, we conduct an ablation study on the bidirectional dynamic connection: (a) No connection
removes lateral connections and thus is similar to CoViAR, (b) Unidirectional establishes
connections from M/R-Networks to I-Network, but not vice versa, i.e., Equation equation 3 becomes
x̂M = xM , x̂R = xR, (c) No conv replaces (de-)conv layers with simple up/down-sampling,
(d) No attention removes the multimodal-gated attention module. The results are shown in
Table 1. We can see that lateral connections are critical component of our model (Ours vs. No
connection) and doing so in a bidirectional fashion significantly improves performance (Ours
vs. Unidirection). We can also see that using (de-)conv layers and dynamically modulating the
connection with gate functions improve performance (Ours vs. No conv and No attention).

Table 2 shows per-frame runtime speed (ms) and GFLOPs measured on an NVIDIA Tesla P100
GPU with Intel E5-2698 v4 CPUs (⇤ process individual frames. † and ‡ process 16- and 25-frame
sequences, respectively). Our approach has the same preprocessing time of CoViAR and DMC
because all three approaches use the same video loader implementation (Wu et al., 2018). As for the
inference speed, IMRNet is comparable to CoViAR and even slightly faster than DMC (we divide
the total inference time by #frames following the convention of Wu et al. (2018)). This is partly
because we use lighter backbones (R18/R50 vs. R152 used in CoViAR and DMC) to compensate
for the expensive 3D convolutional operations, while DMC requires an OF generator network of 7
all-convolutional layers, which adds extra cost. In terms of per-frame FLOPs, ours is more efficient
than CoViAR and DMC because the computation is done at the sequence-level rather than per-frame;
we observe a similar trend for R(2+1)D (which uses ResNet18) vs. ResNet152. This shows that our
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optical flow images; we simply concatenate our IMRNet features with the I3D features as our final
representation (no lateral connections between IMRNet and I3D). This model outperforms both
CoViAR and DMC-Net trained with optical flow (bottom group, Table 1). DMC-Net improves upon
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Self-Supervised Learning of Compressed 
Video Representations
• Efficient self-supervised approach to learn video representations
• IMR Network - three-stream video architecture that encodes a 

compressed video
• For details, please refer to our paper
• Project page : http://vision.snu.ac.kr/projects/compressedvideo/


